

SEMITRANS[®] 5

Trench IGBT Modules

SKM300MLI066TAT

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

Typical Applications*

- UPS
- 3 Level Inverter

Remarks

- Case temperature limited to T_c =125°C max
- Recommended T_{op} = -40..+150°C for IGBT; T_{op}=-40..+125°C for diod
- T_{op}=-40..+125°C for diode
 T_{vj} is intended as absolute maximum rating, limited by diode
- Fig.2 is referred to IGBT current capability

, Kj	
, KB	
± K≩.	Ľ.
÷	

ML	.I-IAI	

Absolu	Absolute Maximum Ratings T _{case} = 25°C, unless otherwise specified					
Symbo	I Conditions		Values	Units		
IGBT						
V _{CES}	T _j = 25 °C		600	V		
I _C	T _j = 175 °C	T _c = 25 °C	400	A		
		T _c = 80 °C	300	A		
I _{CRM}	I _{CRM} =2xI _{Cnom}		600	А		
V _{GES}			± 20	V		
t _{psc}	V_{CC} = 360 V; V_{GE} \leq 15 V; VCES < 600 V	T _j = 150 °C	6	μs		
Inverse	Diode					
I _F	T _j = 150 °C	T _c = 25 °C	324	А		
		T _c = 80 °C	211	A		
I _{FRM}	I _{FRM} =2xI _{Fnom}		420	А		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	2100	А		
Freewh	eeling Diode					
۱ _F	T _j = 150 °C	T _c = 25 °C	324	A		
		T _c = 80 °C	211	A		
I _{FRM}	I _{FRM} =2xI _{Fnom}		420	А		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	2100	А		
Module	;			_		
I _{t(RMS)}			500	А		
Τ _{vj}			- 40 + 150	°C		
T _{stg}			- 40 + 125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _{case} = 25°C, unless otherwise specifie					pecified	
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 4,8 mA		5	5,8	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,5	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			1200	nA
V _{CE0}		T _j = 25 °C		0,9	1	V
		T _j = 150 °C		0,85	0,9	V
r _{CE}	V _{GE} = 15 V	$T_j = 25^{\circ}C$		1,8	3	mΩ
		T _j = 150°C		2,7	3,8	mΩ
V _{CE(sat)}	I _{Cnom} = 300 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,45	1,9	V
		$T_j = 150^{\circ}C_{chiplev.}$		1,7	2,1	V
C _{ies}				18,4		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		1,14		nF
C _{res}				0,54		nF
Q_{G}	V _{GE} = -15V+15V			3900		nC
R _{Gint}	T _j = °C			1		Ω
t _{d(on)}				140		ns
t,	$R_{Gon} = 2,2 \Omega$	V _{CC} = 300V		89		ns
É _{on}	di/dt = 3400 A/µs	I _C = 300A		3,5		mJ
t _{d(off)}	$R_{Goff} = 2,2 \Omega$	T _j = 125 °C		433		ns
t _f	di/dt = 3400 A/µs	V _{GE} = 15V/+15V		116		ns
E _{off}				10,1		mJ
R _{th(j-c)}	per IGBT	•		0,15		K/W

SEMITRANS[®] 5

Trench IGBT Modules

SKM300MLI066TAT

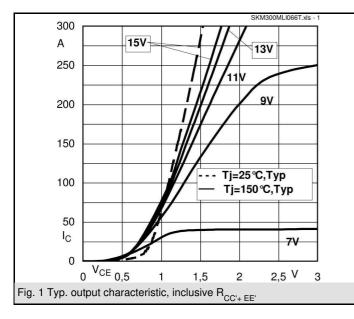
Features

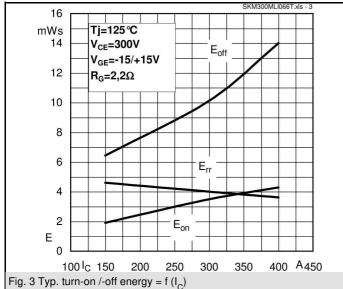
- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

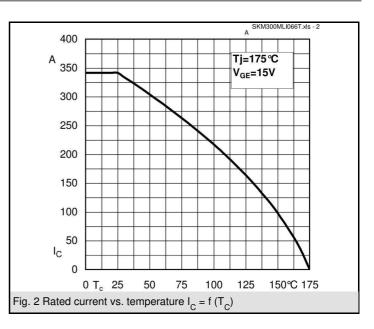
Typical Applications*

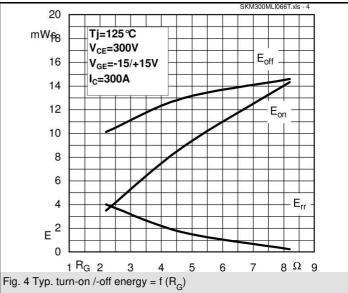
UPS3 Level Inverter

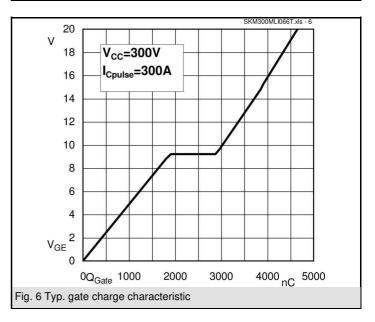
Remarks

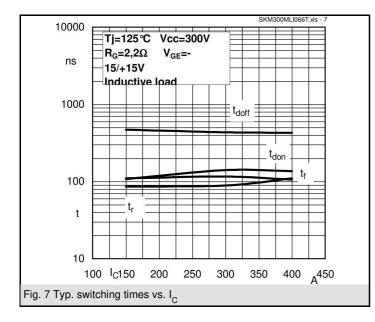

- Case temperature limited to T_c =125°C max
- Recommended T_{op} = -40..+150°C for IGBT; T_{op}=-40..+125°C for diode
- T_{vj} is intended as absolute maximum rating, limited by diode
- Fig.2 is referred to IGBT current capability

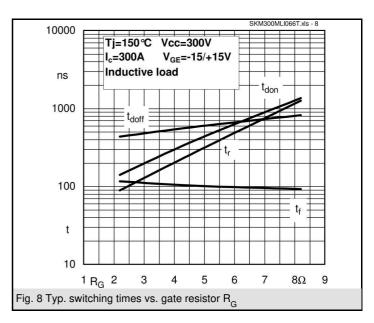

Characte						
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	I_{Fnom} = 245 A; V_{GE} = 0 V			1,35	1,6	V
		T _j = 125 °C _{chiplev.} T _j = 25 °C		1,35	1,6	V
V _{F0}		,		1	1,1	V
		T _j = 125 °C		0,9	1	V
r _F		T _j = 25 °C		1,42	2	mΩ
		T _j = 125 °C		1,8	2,4	mΩ
I _{RRM} Q _{rr}	I _F = 245 A	T _j = 125 °C				A µC
E _{rr}	V_{GE} = -8 V; V_{CC} = 300 V					mJ
R _{th(j-c)D}	per diode			0,28		K/W
	eling diode (Neutral (Clamp Diode)				
$V_F = V_{EC}$	I _{Fnom} = 245 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,35	1,6	V
		$T_j = 125 \ ^{\circ}C_{chiplev.}$		1,35	1,6	V
V _{F0}		T _j = 25 °C		1	1,1	V
		T _j = 125 °C		0,9	1	V
r _F		T _j = 25 °C		1,42	2	V
		T _j = 125 °C		1,8	2,4	V
I _{RRM}	I _F = 300 A	T _j = 125 °C		194		А
Q _{rr}	di/dt = 3400 A/µs			13		μC
E _{rr}	V _{GE} = 0 V; V _{CC} = 300 V			4		mJ
R _{th(j-c)FD}	per diode			0,28		K/W
R _{th(c-s)}	per module				0,038	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M6		2,5		5	Nm
w					310	g
Temperat	ture sensor					
R ₁₀₀	T _s =100°C (R ₂₅ =5kΩ)			493±5%		Ω
						к

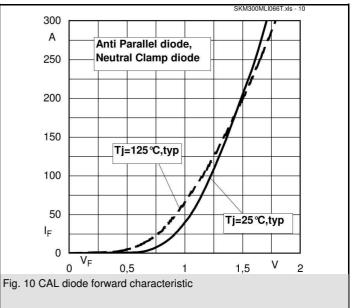

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

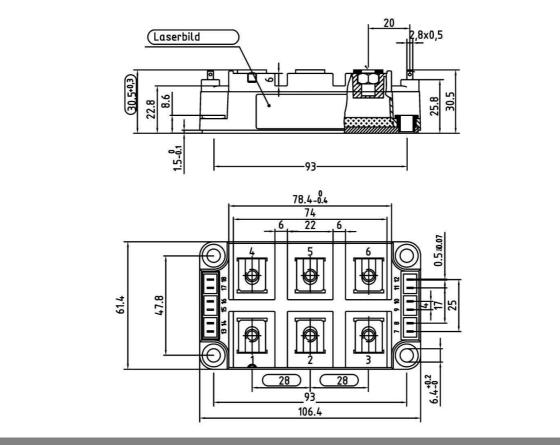

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.

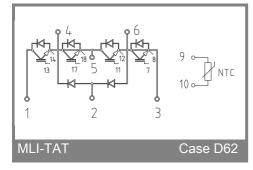












UL recognized

file no. E 63 532

Case D62

