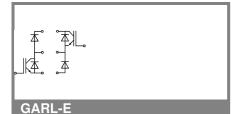


SEMITOP® 3

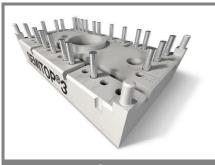
IGBT Module

SK75GARL065E


Preliminary Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence


Typical Applications*

- Switching (not for linear use
- Switched mode power supplies
- UPS
- Double PFC
- Multilevel inverter

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specifie						
Symbol	Conditions		Values	Units		
IGBT	•			'		
V_{CES}	$T_j = 25 ^{\circ}\text{C}$ $T_i = 125 ^{\circ}\text{C}$		600	V		
I _C	T _j = 125 °C	T _s = 25 °C	80	Α		
		T _s = 80 °C	55	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		180	Α		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C	10	μs		
Inverse I	Diode					
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$	57	Α		
		T _s = 80 °C	38	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	440	Α		
Freewhe	eling Diode					
I_{F}	T _j = 150 °C	T_{case} = 25 °C	103	Α		
		T _{case} = 80 °C	69	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	880	Α		
Module						
I _{t(RMS)}				Α		
T _{vj}			-40 + 150	°C		
T _{stg}			-40 + 125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _s = 25 °C, unless otherwise specifications						ecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2.1 \text{ mA}$		3	4	5	V
I _{CES}	V _{GE} = 600 V, V _{CE} = V _{CES}	T _j = 25 °C			0,0066	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			360	nA
V_{CE0}		T _j = 25 °C		1,2	1,3	V
		T _j = 125 °C		1,1	0,9	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C			7,7	mΩ
		T _j = 125°C			14	mΩ
V _{CE(sat)}	I _{Cnom} = 90 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,7	2	V
		$T_j = 125^{\circ}C_{chiplev.}$		2,2	2,2	V
C _{ies}				4,8		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,45		nF
C _{res}				0,27		nF
Q_G	V _{GE} =0 20 V			750		nC
t _{d(on)}				54		ns
l t _r	R_{Gon} = 13 Ω	$V_{CC} = 300V$		58		ns
E _{on}		I _C = 100A		2,71		mJ
t _{d(off)}	R_{Goff} = 13 Ω	T _j = 125 °C		410		ns
t _f		V _{GE} = ±15V		36		ns
E _{off}				2,75		mJ
$R_{th(j-s)}$	per IGBT				0,6	K/W

SEMITOP® 3

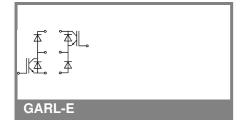
IGBT Module

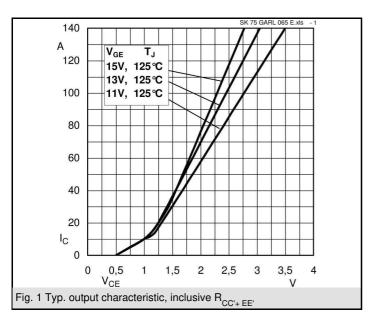
SK75GARL065E

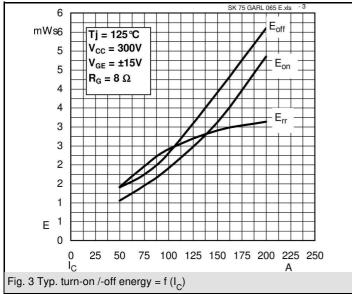
Preliminary Data

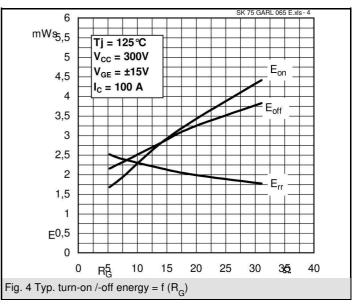
Features

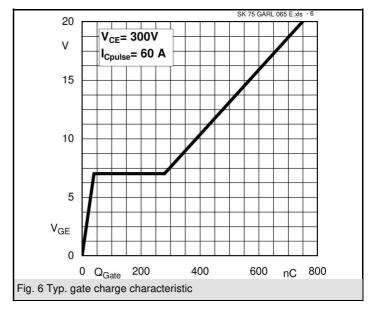
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- · High short circuit capability
- Low tail current with low temperature dependence

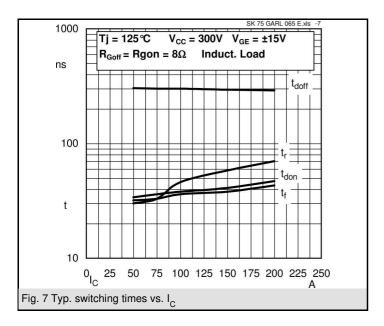

Typical Applications*

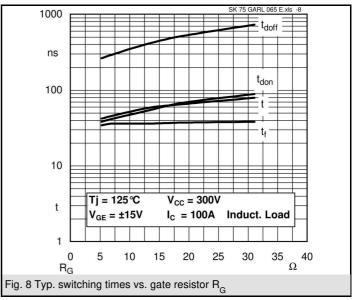

- · Switching (not for linear use
- Switched mode power supplies
- UPS
- Double PFC
- Multilevel inverter

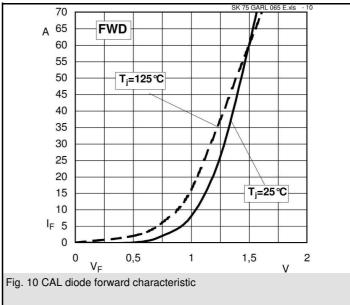

Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	$I_{Fnom} = 30 \text{ A}; V_{GE} = 0 \text{ V}$			1,3	1,5	V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,2	1,45	V		
V_{F0}		T _j = 125 °C		0,85	0,9	V		
r _F		T _j = 125 °C		9	16	mΩ		
I _{RRM}	I _F = 30 A	T _j = 125 °C		22		Α		
Q _{rr}	di/dt = -500 A/µs			2,2		μC		
E _{rr}	V _{CC} =300V			0,2		mJ		
$R_{th(j-s)D}$	per diode				1,2	K/W		
Freewhee	ling diode							
$V_F = V_{EC}$	I_{Fnom} = 60 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,45		V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,4		V		
V_{F0}		T _j = 125 °C		0,85	0,9	V		
r _F		T _j = 125 °C		5	9	V		
I _{RRM}	I _F = 100 A	T _i = 125 °C		92		Α		
Q_{rr}	di/dt = -9200 A/µs	,		39,1		μC		
E _{rr}	V _R =300V			1,85		mJ		
$R_{th(j-s)D}$	per diode				0,6	K/W		
M_s	to heat sink		2,25		2,5	Nm		
w				30		g		

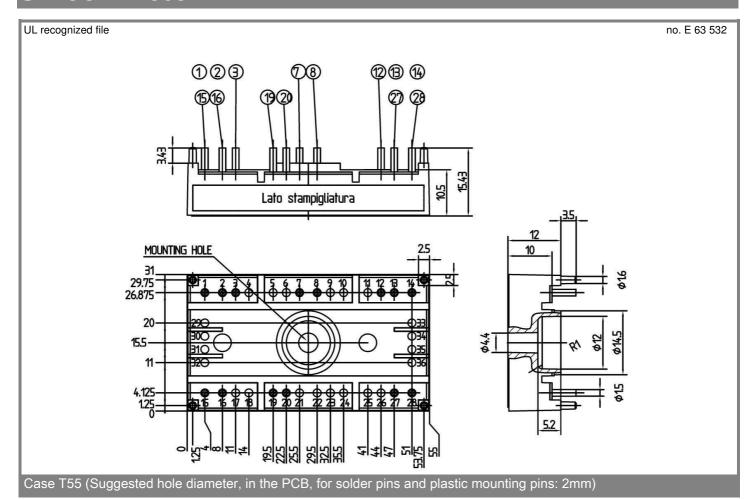

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

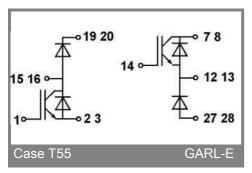

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.











4 21-02-2007 SCT © by SEMIKRON

5 21-02-2007 SCT © by SEMIKRON